
1

dt

AN INTERACTIVE GRAPH

THEORY SYSTEM*

by

Michael S. Wolfberg

ü O

m

A

Keproducsd by th«
CLfARINGHOUSE

»of f»dw»l Scientific 4 Technical
Inlormtlion Spfingdeld Va 22ISI

Massachusetts

JOT pub'... • i*
diatribu1"-

,VCii

• • -.od

COMPUTER ASSOCIATES
division of

APPUED DATA RESEARCH, INC.

i
*

BEST
AVAILABLE COPY

r
CL

. .

MASSACHUSETTS COMPUTER ASSOCIATES
« L,V„OH OF MppL(ED DÄTA K;IJH:/-.^CH(INC.

(617) 245 9540
LAKESIDE OFFICE PARK WAKEFIELD, MASSACHUSETTS 01880

AN INTERACTIVE GRAPH

THEORY SYSTEM*

by

Michael S. Wolfberg

i
I
:

D

•• CA-7003-0211
March 2. 1970

■

This «s a preprint of a paper to be presented at:

Computer Graphics 70 International Symposium
April 14-16. 1970
Brunei University
Uxbrtdgc Middlesex England

w

This paper, written for the Advanced Research Projects Agency under
ARPA Order Number 1228, describes work done at the Moore School of
Electrical Engineering, University of Pennsylvania, Philadelphia,
Pennsylvania for Rome Air Development Center and the Information Sys-
tems Branch of the Office of Naval Research under Contract NOnr 551(40),

[1

[i

n
n

n

ABSTRACT

This paper describes an interactive graphics system for solving
graph theoretic problems. The system U implemented on a remote graphics
terminal with processing power connected by voice-grade telephone line to
a central computer. The potential of using the terminal as a programmable
subsystem has been exploited« and computing power is appropriately divided
between the two machines. In order to expre?s interactive- graph theoretic
algorithms, the central computer may be programmed In an algorithmic language
which includes data structure and associative operations. Dcamplos of system
use and programming are presented.

\

! n
o

D
!i

!

TABLE OF CONTLNTS

ABSTRACT

INTRODUCTION 1

ENVIRONMENT 3

A USER'S VIEW 3

riguro 1 5

Figure 2 7

Figure 3 8

Figure 4 9

THE AL^A DATA STRUCTURE AND LANGUAGE 10

EXAMPLE OF A GRAPH THEORETIC ALGORITHM 11

Figure S 12

IMPLEMENTATION OF ALU 15

ROLL OF THE GRAPHICS TERMINAL IS

INTERACTIVE PROGRAMS 18

EXAMPLE OF AN INTERACTIVE PRCXSRAM 20

Figure 6 21

SUMMARY 22

REFERENCES 24

■

n
n
n
n
n

n

n

INTRODUCTION

The medium of computer graphics provides a capability for dealing
with pictures in man-machine communication. Graph theory is used to
model relationships which are represented by pictures and is therefore an
appropriate discipline for the application of an Interactive computer graphics
system. Previous efforts to solve graph theoretic problems by computer
have usually involved speciellzed programs written in a symbolic assembly
language or algebraic compiler language.

In rucent years, graphics equipment with processing power has
been commercially availdblo fcr use as a remote terminal to a largo central
computer. Although these terminals typically Include a small general pur-
pose computer, the potential of using one as a programmable subsystem has
received little attention.

These motivations have led to t'.ie design <ind Implementation cf an
interactive graphics system for solving graph theoretic problems. The sys-
tem operates on an IHM 7040 with a DEC-338 graphics terminal connected by
voico-grade telephone line. Tt> provide effective response times, computing
power is appropriately divided between the two mAcnines.

The remote computer graphics terminal Is controlled by a special-
purpose executive program. This executive Includes an interpreter of a com-
mand lanquige oriented towards controlling the ^xlslnncc avi ditplay of
graphs. Several interact! 'e functions, such as graph drawing and odiUng,
are available to a user thr«. jgh light button and pushbutton selection. These
functions, which are local to the icmln.il. are programmed In a mixture of ihc
terminal computer's machine language and the Interpreter command language.

Tor more significant computations the central computer is u ed, but
response time for interactive Operation is then diminished. In order to over-
come the low bandwidth of the telephone llnh, the central computer may call
upon a program at the terminal as a subroutine.

Based on the mathematical terminology used to define gr iphs, a

high level language was developed for the specification of interactive al-

gorithms. A growing library of these algorithms includes routines to aid in

the construction and recoanition of various types of graphs. Other routines

In the library are used for computing certain properties of graphs. Graphs

may be transformed by some routines with respect to both connectivity and
layout. Any number of graphs may be saved and later restored.

0
' I

D

i

0

Q
1
B

A programmer using the terminal as an alphanumeric consoie may call
upon the programming features of the system to develop new interactive

algorithms and add them to the library. Programs may also bo created for the
graphics terminal, using the central computer for assembly.

n
n
n
n
w

!

ENVIRONMENT

The interactive Graph Theory System is an experimental computer
software system which operates as a user program In the cnvironr.cnt of
the Mooro School Problem Solving racllity (or MS PSF) at the Moore School
of Electrical Engineering of the University of Pennsylvania. The MULTILIST
Project at the Mooro School designed and developed the MSPSF as an attempt
to combine storage and retrieval capabilities of a compi T with its com-
putational power to solve problems [3, 7, 8, 9, 10], The hardware used
for this work consist of a multi-console system attached to an IBM 7040
contial processor. Cince the 7040 does not directly support a variety of
terminals, a small DEC PDP-8 computer Is Interfaced to the 7040 and is used
to service Teletypes over 110-baud dial-up telephone lines and an elaborate
graphics terminal via a 2400-baud private line. The graphics terminal is a
DEC-338 Programmed Buffered Display, which includes a PDP-P computer aj
one of two processors; the other is a more specialized proces^T oriented
towards the control of an attached digital CRT display. Both processors share
a common 8192-word 12-bit core memory with 1.5^* cycle time. Although the
DEC-338 can be used as a stand-alone system it is configured as a remote
computer graphics terminal, with a fixed-head minidisk of 32K 12-bit words
and one DECtape for more permanent storage. The terminal includes an ASR-33
Teletype for keyboard and oapcr tape irout and printed (and punched tape)
output, a box of pushbuttons, and a light pen for eraphical input.

A USER'S VIEW

n
A user of the Interactive Graph Theory System sits In front of the ton-

Inch-squarc display screen of the graphics terminal with the light pen in
one hand and the pushbutton box conveniently placed for accessibility by his
other hand. The system at the user's fingertips provides a simulated piece of
"paper" on which he may draw an abstract graph. The user directs the systen.
by using the light pen to point at light buttons and by depressing appropriate

Numbers within brackets indicate references.

I

1

■;

a
a

ü

0

ii

D
11
U

a

a

pushbuttons. Indicative messages displayed Ly the system instruct the

user of what he may cause to happc i. The novice user slowly reads these

messages and carefully points at his choice of light buttom, giving the

appearance that the system is controlling him. The experienced user,

however, so quickly points at light buttons and depresses pushbuttons that

he appears to control the system.

The user is given the tools to construct a graph of arbitrary connec-

tivity consisting of any number of vortices and directed or undirected arcs.

Any vertex or arc may be labelled, and the relative position of each label may
be Individually controlled. Six distinguishable shapes are available for

vertices, while arcs are generally straight lines directly connecting a pair

of vertices. An elliptically-shapcd arc is employed when it is a loop con-
necting a vortex to itself. The user maj view the graph on the "fi-U" paper
or he may select any one of three smaller window sizes (half- fourth-, or

eighth-paper) und "move" the window to a chosen section of the paper for
more detailed work. The user Is given the facilities for altering or deleting

any part of a graph on the paper.

Once a user has drawn a graph he may save It for future use along
with any number of associated key words In the large file or data base which

Is available for all users of the MSPST. Later restoration of any number of

graphs may be specified by a retrieval description as a logical combination
of key words.

The Interactive Craph Theory System Includes a growing library of
interactive graph theoretic algorithms which the user may call upon. He may,

for example, choose to apply a particular algorithm to a graph which ho has
drawn. Figure 1 Is a picture of the display screen resulting from I shortest

path algorithm applied to a graph which the user drew. The Integers along the

directed arc« are labels the user Included to Indicate the cost of traversing
each arc. The path computed by the system. Indicated by darker arcs. Is a

minimum cost path from the upper vertex as the given starting point to the
lower one as the given ending vertex. With this interactive algorithm, the
user may request fhe shortest path between any pair of vertices; he may also
alter any aspect of the graph and again seek a shortest path.

(—

i
I

• tmmm MW it
»• if re« mmm MM
M ti T« «,«*■ «MM

n Figure 1. A Shortest Path Computed

-

ö
0
fl
n
o

o

ö

w
0

i
D
]

Figure 2 shows another example of the application of an interactive

algorithm to a user-drawn graph. In this case the user has drawn a non-

cyclic graph üVA then applied a layout algorithm to move the vertices so
the graph appears in the furm of a tree. Nexi, the user caused the algorithm

to further refine the layout of the tree by permuting the order of the five arcs

emanating from the root. In particular, the leftmost arc moved to the fourth

position and the tree then appeared as in Figure 3.

Another algorithm which has been included in the system determines
all maximally complete subgraphs of a given non-directed graph. This al-

gorithm alters the shapes of vertices to display to the user one such sub-

graph at a time. Figure 4 shows one maximally complete subgraph which has

been computed.

These three algorithms demonstrate the types of graph theoretic prob-
Ölems which can be solved. The novice user can take advantage of the Inter-

active Graph Theory System to the extent of applying existing interactive ai-

Qgorithms, but the primary significance of the system is the way in which users
can compose interactive graph theoretic algorithms as programs in a compiler-

level language. To enable the user to develop programs, the graphics term-

inal can be made to operate as a text console. In this mode the DEC-338

mimics the characteristics of a Bunker-Ramo Teleregister alphanumeric con-

sole, which used to be a ,verniinal of the Moore School Problem Solving
Facility. The display screen is arranged as twelve lines of 64 characters

each, and the Teletype keyboard is used to control the contents of the screen,
with some of the special characters reserved for local character ed.tlng

0 functions. One of the keyboard characters has the meaning of the TRANSMIT
key of the alphanumeric console, which is to cause transmission of the con-
tents of the display screen from the terminal to the computer. The DEC-338

Is used as a text console in this system fcr preparing and editing programs,
file manipulation, and data retrieval.

A complete subgraph of a given undirected graph G is a subgraph of G such that

each pair of vertices of the subgraph is connected by an arc. A maximally com-

plete subgraph of a given undirected graph G is a complete subgraph of G which
is not a subgraph of any other complete subgraph of G.

6

n

n
n
n

i

o

■

n
i
n

M • 10 »ttnuu met
M it rot ANOTMII »oot
M II TO ALTtt »»«»M

Figure 2. A Tteo After Layout

\

■

i:

■

ö

:i

• to *t»l«Ut| MCt
it re« anoTMCt too*
ii to m.ita •••»«

Figure 3. The Same Ttoe with Arc« Pormuled

o
D
;

]

n

n
n

n

n
Ö

•• • «o »II i««t tMI

ri9uro 4. A Maximally Complete Subgraph Computed

•

!

THE ALIA DATA STRUCTURE AND LANGUAGE

The approach taken to represent graphs in this system was dictated
by the classic definition: a graph is an ordered pair of sets (X, D, where X
is a set of elements (vertices) and fis a set or ordered pairs of elements of
X (arcs) [1]. The I'ORTRAN IV language was chosen as a base, and a new
data type was introduced which would allow for the representation of ordered
pairs, sets, and other appropriate constructs not reprcsentablc in FORTRAN IV.
Also incorporated is the facility to associate an arbitrary amount of data
with any element of the data structure. The approach used was based on that
used by George Dodd in the design of the Associative Programming Language
as an extension of PL/I (2j. This extension of FORTRAN is called ALIA. One
deficiency of Dodd's APL which has been eliminated in ALLA is the necessity
for specifying in advance the allowable associations an entity may have.

The additional data type which has been introduced Is named entity.
There Is no literal naming of entitles in ALLA except for the undefined entity
UKDrr. Instead, entities are referenced through entity variables or by a
relation or association with an entity. Ther are three types of entities: atony
jMir, and set. Each declared entity variable may, at any one time, name a
particular atom, pair, or sot. or it may have a value of UNDEF.

Each atom, pair, or sot may have any amount of associated data. An
associated datum is called a propeity and is reforencod by a property name.
The value of the property of an entity may be an integer, real, or logical
constant, or it may be an entity.

An entity of the type atom is one which has no structure other than its
•■sodated properties. A pair is a type of entity whic h, in addition to any
properties, has a left-clement and a right-element, each of which may be
an entity or may be undefined.

A set, besides having ajsociated properties. Is a structure with any
number of elements, each of which must he an entity. A set may have no ele-
ments, in which case It is called empty. Altl jgh the word 'set'' is used.

I

in

0

I
0

1

n

!!

0

the Implement itlon Imposes an ordering to the elements, and so one muy
make use of the "list'* nature of this structure. Also, membership in a set
is not limited to a particular element appearing once. There are no restrictions
on the structuring of data in this system. For example, a particular set
may even be a member of itself three times. More important, however, is
the unlimited hierarchy of the relationships which can bo modelled in this
structure.

With this data structure a graph will be defined as an ordered pair,
where the left-element of the pair is the set of vertices, and the right-clement
is the set of arcs. Each arc is an ordered pair, whore the loft element is
the "from-vertex" of the arc, and the right element is the "to-vcrtox". Each
vertex will ordinarily be an atom, but the M.LA data structure permits any
type of entity as an element of a pair or set. Thus one could even represent
a graph of graphs, or other interesting structures. More commonly, one fltJs
the following structures appearing in graph theory manipulations:

1. A set of arcs (whore order Is Important) far a path.
2« A set of arcs as an entity property of a vortex for its outgoing arcs.
3. A set of vertices as an entity property of a vertex for its neighbors.
4. An intogor property of a vortex for its depth in a trco.

EXAMPLE OF A GRAPH TMLORETIC ALGORITHM

Instead of presenting a full description of ALLA. a practical example
will be explained in detail. The SilPTHW function chosen for this illustration
is the algorithm for finding a sjhortest gatji in a weighted directed graph. It
was this function, used along with an interactive ALLA routine to interface
with the user, which was responsible for producing figure 1. The reader should
refer to the source listing of SHPTHW in Figure 5 in the following discussion.
The lines of the function have been numbered for reference.

Figure S constitutes the definition of the function SHPTHW whose
value or result is a shortest path given a graph G and the starting vertex A and

II

:"

■

i J

I
1

LINE

1 rKTHY HJNC110K SHPTHV(A«B*G'
8 BiriTY A«B«G«U5Kl*f(JSr7#V#0AV#HV0At«AA
3 ENTITY INAItCfOUTAhC
4 1NTICF.H Wl:iCHT«l)lST
5 PMOPEnlY DIST
6 THMCUCH 10 KOHALL V IN LM,N(C)
7 IC DISTCV) ■ IOOSCCCO
b M: l(.) • 0
9 INSKM1 A INTO CKJ.M(DSKT)

10 80 TDSFT • rSFT
1 1 CHrAU SET DSIT
18 1HN0UCH 40 FOKALL V IN ll;SfcT
13 THHÜUCH 30 fOI.Af.L OAV IN UUIANCCV)
14 HUOAL • uri if#/\Ai.» KVOAV • HELK(OAV)

is ir cniiTCHvoAV) .u* (DISKV» ♦ VEICNTCOAV))) GOTO M
16 LlSTOtVOAV) ■ DISTCV) • kEIGNKOAV)
17 INSFHT HVÖAV INTO DSE1
10 30 CONTINUE
19 40 CONTINUE
80 1)1 LETF TDSFT
81 IF (.NOT.FTPmnSFT)) COTO 80
88 DELETE USET
8 3 CHEATK SET SHHTK
84 IF (DISTCO) .EO. 10000000) COTO 300
85 V • n
86 110 !► (V .FO. A) GOTO 300
87 THHOUCH 180 FOJtALL AA IN INAHC(V)
80 180 IF ((niST(LELK(AA)>*WFICHT(AA)).lC.DIST(V/)> GOTO 130
8 9 CALL EftR0M6HShPThk)
30 130 INSEHT A4 INTO SHPTKb
31 V ■ LEL^(AA)
38 GOTO 110
3 3 300 RFTUH,:
34 END

rigurc 5. Shortpst Path Function

12

■

fi

D
D
0
II
0

ending vertex B. The result of the function is a set of arcs of the given
graph: It no path Is possible, the set is empty. Line 1 is the :unction dec-
laration. It is an entity function since Its result is an entity, i.e. a set of
arcs. Linos 2 through 4 declare the data types of the throe arguments of
the function and all of the variables used within the function budy, both
locals and externals. Line 5 declares DIST as a properly name.

The SMPTH\V function assumes that the given gruph is of the form
described in tl < previous section, and associated with each vertex is its
sot of incoming srei (INARC) and its set of outgoing arcs (OUTARC). Also
associated with each arc of the given graph is its integer weight (WHIGHT).
Throughout the body of the function the uses of the names INARC, OUTARC,
and WEIGHT are purposely ambiguous. Thai is, the ALLA syntax is ambig-
uous, so that each of these three names may bo either properties or functions;
only the environment determines which is the case. Thus the SHPTIiW
function assumes either the given graph already possesses values of the
three properties, or thor« arc equivalent functions which compute them.

The program, which employs Moore's algorithm (C), begins on lines 6
and 7 by assigning an associated distance of infinity (actually ten million
here) to each vertex in the given giaph. The THROUGH statement rm lino 6
specifies that the entity variable V should on each itoration of the range of
the THROUGH loop assume the value of the next element of tho set LCLM(G).
The torm LKLM(G) represents the left-element of the pair G, which is the set
of vertices of the givnn graph. On line 8 the starting vertex is given an
associated distance of 0. Tho property DIST is being used to represent tho
minimum known path cost fiom tho starting vertex. Initially, tho distance
assigned to the starting vertex is trivially known to be 0. All other distances
are assumed to be infinite, since without considering the graph's connectivity
all other vertices arc potentially unreachable.

The algorithm consists of an iterative search on lines 9 through 21
followed by a reverse trace. The search begins at tho starting vertex and a
oistance is assigned to each vertex which can be reached from the starting
vertex by traversing one outgoing arc. Next, a distance is assigned to each

i

13

"neighbor" vortex which Is connected by an outooing arc to one of the ver-

tices iutt assigned. The distance of each neighbor vertex is equal to the dis-

tance of its nrcvious vertex plus the weight of their connecting arc. If a

distdi.u has 'Ircady been assigned to a vertex, it is replaced with a now dis-

tance only when the new distance Is numerically smaller. Ulis process la

repeated until a pass is mudo which does not improve any distance In the

graph. At this time, the distance associated with each vertex in the graph

Is the minimum cost to reach that vertex from the given starting vortex.

The statement on line 9 should be road as "Insert the element named

by entity variable A into a created sot henceforth named by entity variable

DSET". The statement on line 10 has entity variables on both sides of tho

equal sign. Whereas FORTKAN semantics dictate a copy would be made If

these were Integer, real, or logical variables, the entity variable TDSCT is

made to ioferencc (or name, or point to) the entity referenced by DSCT. In

general, this interpretation applies to entity expressions on the right side of

the equal sign, as occurs on line 14.

1

[1

:

i

i

During each iteration of the search, tho entity variable TDSET rofor-

enccs the set of previously assigned vortices. DSET names the set u. od to

keep track of tho now vertices being assigned during an iteration. Uno 21

contains the test fnr whether another iteration is nacdod. EMPTY Is a pred-

icate function which is .TRUE, whon its argument is a set with no members.

Note that the ALLA programmer is required to perform his own m »nage-

ment of storage: on each iteration the DELETE stitcment on line 20 c* esos

the frcotng of the space used to model tho set referenced by TDSET.

»
After the last iteration there is a check at lino 24 to ascertain if tho

given ending vertex has been assigned a distance; if its distance has remained

Infinite it cannot be reached, and there is no trace. Otherwise, the trace

starts with the ending vorto*. at Uno 25. Each incoming arc is considered along

with the vortex from which the ire emanates. If the distance of that vertex

plus the weight of that arc equals the distance assigned to the ending vertex,

that arc is part of a shortest path. ThlE process continues until tho statement

14

D

■

fl

I:

r

r

i:

on line 26 determines the starting vertex has been reached, at which time
the answer has been computed as the set of arcs SHPTHW.

IMPLEMENTATION OF ALU

The ALLA data structure and language which has been Introduced above
is implemented on two modular levels. Tlrst. the compilation of the language
it effected by preprocessing all of the non-FORTRAN statements Into FORTRAN
subroutine and function calls. The package of subroutines which constitutes
the run-time system to realize the ALLA data structure Is the second level of
implementation. Ir order to provide for machine independence« and allow
for easier writing, debugging, and modification, the L language was selected
for both the implementation of the ALiA data structure Into a particular memory
structure, and the preprocessing of ALLA into FORTRAN. L6 was orlglnall/
designed and implemented at the Bell Telephone Laboratories where it was
named "Bell Telephone laboratories' Ipw-yyvol yr.kod yst language" or L*
(pronounced "L-slx") {5j. Based on the original implementation on the IBM
7094, the author implemontfcl UP.L6 for Ihr IBM 7040. In the process of
translation. Improvements an', new features wore added. Including the facility
of linking L* programs with both FORTRAN and MAP assembly language sub-
routines (12).

The separation of data structure (the ALLA programmer's view) from
t!ie implementation of memory structure (the systcmr programmer's view) is
most valuable, especially when the language used to implement m mory
structure Is of the level L<». This modularity supports the freedom to reorganUc
the memory structure at any time in order to adjust time-space operating
characteristics. Also, a researcher may use such a framework for comparative
studies of memory structures. For example, a doubly-linked list approach
might bo compared against the utilization of lists with only forward pointers.

ROLE OF THE GRAPHICS TERMINAL

A common concern of doslgnors of computer graphics systems is the
choice of data and memory structures not jnly to model rehitlonships among

15

:

i

i
i
i

the datii. but also for the maintenance of the display of the datu. When a
single computer system is used for the implementation o* • computer graphics
system, the tendency is to employ one structure which car. also be used to
drive the display controller. However, when the graphical equipment re-
sides at a remote site along with a small computer linked to the central com-
puter by voice-grade telephone lino, t«t lecst a graphics-oriented structure
must be maintained at the ter.r.ir.'l for effective interaction.

One possible solution to the need for tvo structures in two (often)
different computers is the implementation of the same structure in both
machines. Perhaps the terminal computer would handle a subset of what the
central computer can do. A strung motivation for such an approach is the
capability for having programs which can operate in either or both machines.
Although ihis is potentially powerful, unless the two computers are appro-
priately telated, it could be stifling to the effectiveness of both machines.
Namely, the structure in the smaller one might be so general that Its small
capacity is too quickly exceeded, and, at the same time, the possibility for
sophistication in the larger machine might be suppressed.

Die advantages of modularity have dictated the division of labor crn-
phyed in the Interactive Graph Theory System. A special-purpose structure
hi the graphics terminal contains only the parameters relevant to the display
of graphs. This structure and its associated display file are managed by a
special-purpose oxocutivo program named J2pGG|E. for Display of Graphics
graphical Interpretive £xecuu.*e, which controls the DKC-338 terminal. As
its name indicates, its primary role Is the interpretation of a special-purpope
command language. DOGG1C commands are scanned by the interpreter as
sequences of 12-bit bytes which may cither bo received from user programs
running in the DCC-338 itself. 16008 locations of the Drc-338 are reserved
for the execution of these user programs which consist of « mixture of PDP-8
machine language and DOGGIE command language. A programmer-user of this
system may easily avoid the need for knowledge of the DCC-338 and restrict
his programming efforts to the interactive ALLA language. However, the
facilities are available for anyone to write his own user programs. User program
preparation is performed using the terminal as a text console. The assembly

16

n

]

i

ii
ii

of DEC-338 programs Is canrird out on the IBM 7040 by the PDl'MAP

Assembly System [4], which is significantly superior to using the DEC-338

Itself.

All DOGGIE commands implicitly refer to a scratchpad "paper" on

which a single graph may be defined. It is only one graph in the sense that

there is no facility for hierarchical grouping; however, the sitvjln graph

may consist of any number of disjoint components which may give the effect

of displaying more than one graph at a time. The graph may consist of any

number of vertices or arcs, and it may be only partially defined at any time,

since It is permissible to define an arc in terms of vertices which do not

yet exist. There is separate control over which parts of the defined graph

are to be displayed.

The graph maintained by DOGGIE Is built, modified, and deleted

through interpreted DOGGIE commands. The command langi. ij'. includes ele-

ments which affect the gross aspects of the existing gr.ph or the way in

which the graph is being displayed. A group of commands may refer to a

unique vertex or arc by internal name or to all existinfj vertices or arcs. The

option Is also available for DOGGIE to supply a crentcd internal name when

a vertex or arc is defined. A list of other services performed by DOGGIE

follows:

I
i
n

]

n
1. manages all input/output of the DEC-338 by handling interrupts

from the various display flags, the Dataphone interface, thn

minidisk, and the Teletype.

2. manages the display of the graph on the "paper" with four win-

dow sizes available for viewing all or any part of the paper.

3. performs light pen tracking with optional horizontal and/or ver-

tical constraints on a pseudo-pen-point.

4. interprets light pen hits as a result of a user's pointing at dis-

played parts of a graph.

5. helps in the management of the pushbutton box.

17

Q

Q

;

;

:

::

:

::

::

:

:;

■

!

i

o
1

6. handles overlays of user prograin segments by name by inter-

facing with the PDP-8 Disk Monitor System.

7. collects and maintains status information concerning the state

of DOGGIE and its existing graph.

Note that this system design gives the programmer explicit control of

what is displayed instead of automatically monitoring the ALLA structure.

Also, the division of labor employed makes it feasible to substitute another

computer at cither end of the telephone line. For example, an equivalent

DOGGIE executive and set of user programs could be implemented on an ADAGE

terminal.

INTEPACTIVE PROGRAMS

A user program which operates at the terminal is appropriate for prob-

lems whore nearly instantaneous system response is important. An Interactive

algorithm may be entirely resident in the DEC-338, it may be entirely resident

in the IBM 7040, or it may be divided between the two computers. There are

facilities to shift the center of control from one computer to the other. For

example, an Interactive ALIA program running in the IBM 7040 may call upon

a user program in the DEC-338 as a subroutine.

An interactive algorithm written for execution at the terminal may be

appropriate only if minor computing is required and if associated data can be

conveniently represented within the framework of the terminal's data structure.

Although this is not the recommended method for implementing graph theoretic

algorithms, the power of the small machine has been demonstrated by imple-

menting a user program which interprets a Mealy state graph prepared In a

prescribed format and carried out the operations of a finite state acceptor.

The "current" state is indicated by a blinking vertex, and thu user supplies

an input character from the Teletype keyboard (or paper tape reader). According

to the typed (or read) character, an output character (or string) is immediately

typed out on the Teletype printer, and the new current state is made to blink.

18

0
i
n

n

i

Tho sot of DOGGIE connnands constitutes a machlno-indcpondent

Idnguagc for controlling the; display of graphs, Thu language in the pure

sense is not interactive since it is only an output language. It becomes

interactive when used in conjunction with other languages which include

control specification. The DOGGlt language is used in two different en-

vironments w'.thin the Interactive Graph Theory System: first, it is embedded

into ALLA language for executic a in the IBM 7040. Second, it is embedded

into PDPMAP Assembly Language through macros for use in user program

operttlng in the DEC-338. The use of the DOGGIE language in either environ-

ment has the same meaning, which is to direct tho DOGGIE interpreter to

perform commands which define, alter, and display graphs.

The writing of interactive programs is somewhat different in the two

environments, but the basic idea is common to both languages. The input

aspect of the interaction is accomplished by programming in the host language

the observation of communication cells. These cells reflect the status of

the DEC-338 and DOGGIE back to the programmer. The information contained

in these cells includes:

1. current graph display status - intensity, window size and

position,

2. light pen tracking indicators,

3. indication of tho amount of available free blocks,

4. light pen hit information, and

5. complete status output for a vertex or arc.

A communication cell is a rather natural concept for use in tho DEG-

338, for in that environment it is simply an accessible memory location. Ust i

programs operating in the DLC-338 are written with references to the sym-

bolic names of these cells. There are some communication cells in the DEO

338 which are used as indirect addresses of subroutines included within

DOGGIE such as the subroutine to send an 8-bit character over the Telephone

line, A number of communication cells of this type are not dupli- itrd ip the

ALLA environment.

i
0
I

19

0

1
1

I

Cont;iiui.ication colls in the: ALLA onvlronmont art» r«.forenod «is
any oth'.;r rORTf" N intcfjer variable or logical viriable. Tlicy arc autumatlcally
declared in each ALLA subprogram, so the programmer simply references
these cells by symbolic name.

Many of the communication cells In the 7040 ore essentially copies
of the "real" cells in the DEC-338, Hie "real" introduced here moans roal-
time. For example, a pair of communication cells indicates the position of
the pscudo-pon-point Itakad to the light pen tr.ici .ng cursor. In the DEC-
3^8, user programs observine these cells may do so in real-llmo. However,
the communication cells of the DEO338 are copiod over to the 7040 only
when requested by certain statements in interactive ALI/» programs. Since
this copying op« ration tahus about one or two second* to complete, and since
tracking may oiler the position of the pscudo-pen-polnt every few milliseconds,
the communtcation cells in the 7040 cannot reflect this data In re«y-time.

EXAMPLE Or AN INTERACTIVE PROGRAM

An example of a rather small, yet complcic Interactive ALLA program
is presented in figure 6. The following discussion references the SAMPLE
subroutine in Figure 6, which assumes a graph is already being displayed at
the terminal. On lino 2, the subroutine call causes the clearing of the flag
associated with pushbutton number II on the pushbutton box at the terminal.
Line 3 contains a DOG sliton.cnt which indicates the rem.under of the line Is
a symbolic DOGGIE command. This symbolic form of DOGGIE command causes
two 12-blt bytes to be sent to the Di:c-338: octal 3600 and 0000, which the
DOGGIE interpreter will interpret as a commaml to make light pen sensitive
all vertices currently exlntlng in the graph. Next, the statements on lines 4
through 7 cause a message for the user to be placed on two message lines at
the lower left corner of the terminal's display st^oen. As the text of the mes-
sage indicates, this sample progratr allows the user to force the shape- of any
vertex "seen" by the light pen to be made square (vertex shape 6) until
puahbutton ll is dcpresr.ed. The statement on line 8 causes light pen hits to
be allowed. The WAITCHANGE statement of lino 9 shifts control of the sys-
tem to the terminal until some change occurs in the status of pushbuttons.

20

1

L INF.

i 10
II
12
13
14
15
16

90

SUBMOUTlNr SAKPLK
CALL CLM'HUl)
DOG STAht L1PIK WHOLE VIKTEX« A.L
CALL rrssACce»
DOCSlhlNU •MINY TO VLIillCk» TO bf
CALL K.-ISSAGCl)
nOGSTniK'G •NAM SUUAHr* HO 11 TO 6T0P*
VOG ALLHIT
WAMOAKf.l.
IE (PH(ll)) GOTO 30
If CLPHITl .K.. 0) GOTO £0

30

UOC STAHT
GOTO 10
mNUMTI
STOP
IND

LXI^I LHAHt VlhllX 6#(L»H1TP)

Figure 6. Sample Interactive ftogram

21

,

II

light pun, or Teletype Input» When a thing« occurs, communication cells
In the ALIA environment arc updated and control shifts to line 10 where the
current status o(pushbutton 11 Is checked. If It has not been depressed by
the user, control flows to line 11 whore the communication cell LPHITl Is
checked for a value of 0. A non-zero value Indicates a light pon hit occurred,
and the communication cell LPIim contains the Internal namo of the ver-
tex which caused the hit. In this case, the statement on line 12 causes the
shape of the hit vertex to be square.

SUMMARY

This paper has described how a remote computer graphics terminal
with processing power Is used in a multi-console operating system as an alpha-
numeric console ond an interactive graphics device. An Interactive Graph
TTieory System was built in thin environment to exhibit the effective use of
such a terminal and to demonstrate a design for a programming rystem for
solving graph theoretic problems.

In order to express interactive gnph theoretic algorithms, the cen-
tral computer's FORTRAN IV language has been enriched with data structure and
assocl it' o operations and a class of statements to control the existence and
display of graphs at the terminal« The Implementation of this language employs
a separate module to specify the underlying memory structure using L6.

The terminal computer Is managed by an excrutlve program which In-
corporates an interpreter of a special-purpose command language oriented
towards controllln'j the existence and display of graphs. It may be programmed
to carry out local functions as well as those which are performed as subroutines
of an Interactive program running In the central computer.

Examples of system use and programming in the interactive ALLA lan-
guage have been presented.

?2

n

'

All of the work doscrilicii in this paper is fully reparUnl in the authur's
Ph.Ddisscration [111, which Includes cotnploto programming manuals of
interactive ALLA and IXXXSIE command lantjuage. Ooplc* arc .iv.« liable from
the author.

.

21

1

RCrCRENCLS

1 C BLRGE
Tho theory of graphs and its appllcAt«ons
John Wiley and Sons NY 1964

2 G G DODD
APL - a language for assoclaUvo data handling In PL/l
Proc rjCC 1906 677-084

3 D K HSIAO
A flic system for a problem solving facility
Dissertation in LE Univ of Pa 1968

4 T II IGMNSON M S WOLFBERG
The PDPMAP cts&ombly system
Moore School of EE Report 68-U Unlv of Pa 1967

5 K C KNOW ETON
A programmor'b description of L*>
CV^CM Vol 9 No 8 1966 616-625

6 E E MOORE
Shortost path through a maze
Annals of tho C Mtatlon Laboratory of Harvard Univ
Vol 30 Harvard Ui.iv Pros 1959

7 R P MORTON
On-line computing with a hierarchy of processors
Dissertation In EE Univ of Pa 1968

8 R P MORTON M S WOEPBERG
Tho input/output and control system of the moorc school problem
solving facility
Moorc School of EE Report 67-30 Unlv of Pa 1967

24

9 N S PRYWES
Man-computrr problem solving with multilist
Proc IEEE 1966 1788-1801

10 RLWEXEl.BLA.
The dovelopmont and mechanization of a problem solving ficility

"

:

i i

I

Dissertation in EE Univ of Pa 196S

11 M S WOLEUERG
An interact!vo graph theory system
Dissertation in EE Unlv of Pa 1969
also Moore School of EE Report 69-2S Univ of Pa 1909

12 MS WOLEBERG PAT WOLFGANG
UP.L6 - an L6 system for the IBM 7040
Moore School of EE Univ of Pa 1966 Internal report

2S

